ADESSDAAGEPQPAPAPVRRRSSANYRAYATEPHAKKKSKISASRKLQLKTLMLQIAKQEMEREAEERRGEKGRVLRTRCQPLELDGLGFEELQDLCRQLHARVDKVDEERYDVEAKVTKNITEIADLTQKIYDLRGKFKRPTLRRVRISADAMMQALLGTRAKESLDLRAHLKQVKKEDIEKENREVGDWRKNIDALSGMEGRKKKFEG Note: The complete sequence may
include tag sequence, target protein sequence, linker sequence
and extra sequence that is translated with the protein sequence
for the purpose(s) of secretion, stability, solubility, etc.
If the exact amino acid sequence of this recombinant
protein is critical to your application, please explicitly
request the full and complete sequence of this protein before
ordering.
蛋白標簽:
Tag-Free
產品提供形式:
Liquid or Lyophilized powder
Warning: in_array() expects parameter 2 to be array, null given in /www/web/cusabio_cn/public_html/caches/caches_template/default/content/show_product_protein.php on line 668
Note: We will
preferentially ship the format that we have in stock, however,
if you have any special requirement for the format, please
remark your requirement when placing the order, we will prepare
according to your demand.
緩沖液:
If the delivery form is liquid, the default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol.
If the delivery form is lyophilized powder, the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose.
復溶:
We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20℃/-80℃. Our default final concentration of glycerol is 50%. Customers could use it as reference.
儲存條件:
Store at -20°C/-80°C upon receipt, aliquoting is
necessary for
mutiple use. Avoid repeated freeze-thaw cycles.
保質期:
The shelf life is related to many factors, storage
state,
buffer ingredients, storage temperature and the stability of the
protein
itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C.
The
shelf life of lyophilized form is 12 months at -20°C/-80°C.
貨期:
Delivery time may differ from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
注意事項:
Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity.
基因功能參考文獻:
Pim-1 is a novel kinase that phosphorylates cTnI primarily at Ser23/24 and Ser150 in cardiomyocytes, which in turn may modulate myofilament function under a variety of physiological and pathophysiological conditions. PMID: 29544221
Hyperphosphorylation of this serine199 in cTnI C terminus impacts heart function by depressing diastolic function at baseline and limiting systolic reserve under physiological stresses. Paradoxically, it preserves heart function after ischemia/reperfusion injury, potentially by decreasing proteolysis of cTnI. PMID: 28899987
The contributions of cardiac myosin binding protein C and troponin I phosphorylation to beta-adrenergic enhancement of in vivo cardiac function PMID: 26635197
The difference in myosin regulatory light chain phosphorylation between the ventricles of R21C(+/+) in cardiac troponin I mice likely contributes to observed differences in contractile force and the lower tension monitored in the LV of HCM mice PMID: 25961037
troponin I phosphorylation specifically alters the Ca(2+) sensitivity of isometric tension and the time course of relaxation in cardiac muscle myofibrils PMID: 25418306
Combined troponin I Ser-150 and Ser-23/24 phosphorylation sustains thin filament Ca(2+) sensitivity playing an adaptive role to preserve contraction during acidic ischemia. PMID: 24657721
these results indicate that the inability to enhance myofilament relaxation through cTnI phosphorylation predisposes the heart to abnormal diastolic function, reduced accessibility of cardiac reserves, dysautonomia, and hypertrophy. PMID: 24973218
Dominant negative TnI-TnT interface mutation decreases the binding affinity of cTnI for TnT, causes early ventricular remodeling, and blunts the beta-adrenergic response of cardiac myocytes. PMID: 24898585
R193H and R205H mutation increase the binding affinity of Troponin I for Troponin T and Troponin C. PMID: 24326031
Conclude that dilated cardiomyopathy-causing mutations in thin filament proteins abolish the relationship between myofilament Ca(2+) sensitivity and troponin I phosphorylation by PKA. PMID: 23539503
The pattern of cTnI post-translational modification depends on sex and hypertrophic cardiomyopathy genotype. PMID: 23352598
A new functional and pathological role of amino acid modifications in the N-terminal acidic domain of cardiac TnI has been found that is modified by phosphorylations at TnI(S23/S24). PMID: 22940544
Data show that cardiac TnI gene transition and the alternatively spliced cardiac TnT isoform switching occur in postnatal pulmonary vein. PMID: 23176202
Conclude that cTnI phosphorylation by AMPK may represent a novel mechanism of regulation of cardiac function. PMID: 22456184
Generation and functional characterization of knock-in mice harboring the cardiac troponin I-R21C mutation associated with hypertrophic cardiomyopathy. PMID: 22086914
Data suggest that AMPK emerges as a possibly important regulator of cardiac and skeletal contractility via phosphorylation of a preferred site adjacent to the inhibitory loop of the thin filament protein TnI. PMID: 21416543
Loss of troponin I leads to myofibril hypersensitivity to Ca(2+) causing impaired relaxation in restrictive cardiomyopathy. PMID: 20580639
the functional effect of cTnI mutation and its potential value in compensating for the cTnT abnormality PMID: 20551314
Ca(2+) binding to thin filaments reconstituted with either cTnI(wild-type) or pseudo-phosphorylated cTnI(S23D/S24D), cTnI(T144E), and cTnI(S23D/S24D/T144E) was determined. PMID: 20164197
Studies indicate that that immunization of genetically susceptible mice with troponin I but not troponin T induced a robust autoimmune response leading to marked inflammation and fibrosis in the myocardium. PMID: 19446498
calcium induces an extended conformation of the inhibitory region of troponin I in cardiac muscle troponin PMID: 11724531
regulation of myocyte twitch kinetics by beta-stimulation and by endothelin-1 was altered in myocytes containing mutant cTnI PMID: 11934831
PKC-mediated phosphorylation of Ser(43) and Ser(45) of cTnI plays an important role in regulating force development in the intact myocardium PMID: 12003851
Troponin I serines 43/45 and regulation of cardiac myofilament function. PMID: 12181153
demonstration of novel site specificity of effects of protein kinase C phosphorylation on function and emphasize the complexity of modulation of the actin-myosin interaction by specific changes in the thin filament PMID: 12551921
the relationship between sarcomere length and myofilament lattice spacing in troponin I transgenic mice was markedly shifted downward to an overall decreased myofilament lattice spacing following protein kinase a treatment. PMID: 12562915
A primary role of PKC phosphorylation of cTnI may be to reduce the requirements of the contractile apparatus for both Ca2+ and ATP, thereby promoting efficient ATP utilisation during contraction. PMID: 12923217
autoantibodies to cTnI induce heart dysfunction and dilatation by chronic stimulation of Ca2+ influx in cardiomyocytes PMID: 14595408
PKC-dependent phosphorylation of TnI has important role in the modulation of cardiac function under basal as well as augmented states PMID: 14726296
cTnI has a pivotal role in the positive inotropic response of the murine heart to beta-adrenergic stimulation. PMID: 14966306
protein kinase C phosphorylation of cardiac troponin I plays a dominant role in depressing contractility PMID: 15507454
In conclusion, these data (alpha-chloralose-urethane) demonstrate that alpha-adrenergic-mediated force reduction is mediated through troponin I protein kinase C phosphorylation PMID: 15579573
removal of the N-terminal extension of cTnI enhances cardiac function by increasing the rate of myocardial relaxation and lowering left ventricular end diastolic pressure to facilitate ventricular filling PMID: 15611140
The Ca2+ binding properties of various assemblies of the regulatory components that contain one of the cardiomyopathy-related mutant cTnI. PMID: 16531415
Abnormal TnI phosphorylation observed in cardiac failure may explain exacerbated relaxation delay in response to increased afterload and contribute to blunted chronotropic reserve. PMID: 16936010
The cTnI-G203S mutation disrupts interactions with partner proteins, and results in intracellular Ca2+ dysregulation early in life, suggesting a pathogenic role in development of familial hypertrophic cardiomyopathy. PMID: 16950368
TnI deficiency impairs left ventricular relaxation, which leads to diastolic heart failure. PMID: 17526646
cTnI-Cre mice have delayed onset of Cre activity during early heart development PMID: 17540338
The primary effect of protein kinase A phosphorylation of cardiac troponin I is reduced Ca(2+) sensitivity of force, whereas phosphorylation of cardiac myosin-binding protein C accelerates the kinetics of force development. PMID: 17641226
Changes in Ca(2+) affinity also support the idea that the equilibrium between states of actin-tropomyosin-troponin was shifted to the inactive state by mutations that mimic troponin I phosphorylation. PMID: 17872964
Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils. PMID: 18096573
Simultaneous defects in MHC7 & TnI accelerate onset & progression of familial hypertrophic cardiomyopathy. Compared with single-mutant models, double-mutant mice develop severe disease & premature death, progressing directly to a dilated phenotype. PMID: 18362229
Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI. PMID: 18408133
Removal of the N-terminal extension of cardiac troponin I as a functional compensation for impaired myocardial beta-adrenergic signaling PMID: 18815135
Transfer of troponin I-specific T cells can induce inflammation and fibrosis in wild-type mice, leading to deterioration of contractile function. Two sequence motifs of cTnI that induce inflammation and fibrosis in myocardium are characterized. PMID: 18955666
These results indicate that YY1 is a novel regulator of fetal TnI transcription in the heart. PMID: 19013134
the nNOS-PMCA4b complex regulates contractility via cAMP and phosphorylation of both PLB and cTnI. PMID: 19278978