E. coli biotin ligase
(BirA) is highly specific in covalently attaching biotin to the 15
amino
acid AviTag peptide. This recombinant protein was biotinylated in
vivo
by AviTag-BirA technology, which method is BriA catalyzes amide
linkage
between the biotin and the specific lysine of the AviTag.
The tag type will
be
determined during production process. If you have specified tag
type, please tell us and we will develop the specified tag
preferentially.
產(chǎn)品提供形式:
Lyophilized powder
Note: We will
preferentially ship the format that we have in stock, however,
if you have any special requirement for the format, please
remark your requirement when placing the order, we will prepare
according to your demand.
復溶:
We recommend that this vial be briefly centrifuged
prior
to opening to bring the contents to the bottom. Please reconstitute
protein in deionized sterile water to a concentration of 0.1-1.0
mg/mL.We recommend to add 5-50% of glycerol (final concentration)
and
aliquot for long-term storage at -20℃/-80℃. Our default final
concentration of glycerol is 50%. Customers could use it as
reference.
儲存條件:
Store at -20°C/-80°C upon receipt, aliquoting is
necessary for
mutiple use. Avoid repeated freeze-thaw cycles.
保質(zhì)期:
The shelf life is related to many factors, storage
state,
buffer ingredients, storage temperature and the stability of the
protein
itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C.
The
shelf life of lyophilized form is 12 months at -20°C/-80°C.
貨期:
Delivery time may
differ from different purchasing way or location, please kindly
consult your local distributors for specific delivery time.
Note: All of our
proteins are default shipped with normal blue ice packs, if you
request to ship with dry ice, please communicate with us in
advance
and extra fees will be charged.
注意事項:
Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
Datasheet :
Please contact us to get it.
產(chǎn)品評價
靶點詳情
功能:
Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5'-splice site-containing pre-mRNA. Binds to purine-rich RNA sequences, either the octamer, 5'-RGAAGAAC-3' (r=A or G) or the decamers, AGGACAGAGC/AGGACGAAGC. Binds preferentially to the 5'-CGAGGCG-3' motif in vitro. Three copies of the octamer constitute a powerful splicing enhancer in vitro, the ASF/SF2 splicing enhancer (ASE) which can specifically activate ASE-dependent splicing. Specifically regulates alternative splicing of cardiac isoforms of CAMK2D, LDB3/CYPHER and TNNT2/CTNT during heart remodeling at the juvenile to adult transition. The inappropriate accumulation of a neonatal and neuronal isoform of CAMKD2 in the adult heart results in aberrant calcium handling and defective excitation-contraction coupling in cardiomyocytes. May function as export adapter involved in mRNA nuclear export through the TAP/NXF1 pathway.
基因功能參考文獻:
SRSF1 promotes vascular smooth muscle cell (VSMC) proliferation and injury-induced neointima formation. SRSF1 favors the induction of a truncated p53 isoform, Delta133p53, which has an equal proliferative effect and in turn transcriptionally activates Kruppel-like factor 5 (KLF5) via the Delta133p53-EGR1 complex, resulting in an accelerated cell-cycle progression and increased VSMC proliferation. PMID: 28799539
In addition, overexpression of SRSF1 in XRCC4-deficient cells restored the normal level of apoptosis, suggesting that SRSF1 functions downstream of XRCC4 in activating CAD. PMID: 29233683
SRSF1 is a key regulator of DBF4B pre-mRNA splicing dysregulation in colon cancer. SRSF1 is required for cancer cell proliferation. PMID: 29262322
Authors showed that Mir505-3p was capable of inhibiting tumor proliferation driven by SRSF1 in two neural tumor cell lines, Neuro-2a (N2a) and U251, exclusively in serum-reduced condition. Authors observed that the protein level of SRSF1 was gradually promoted by increasing concentration of serum. PMID: 29120871
This study showed that the splicing factor kinase SRPK1 is a key regulator of spinal nociceptive processing in naive and nerve injured animals. We present evidence for a novel mechanism in which altered SRSF1 localization/function in neuropathic pain results in sensitization of spinal cord neurons. PMID: 27616424
The expression levels of three splicing factors, ESRP1, PTB and SF2/ASF, are significantly altered during cardiac hypertrophy in mice. PMID: 24552714
Deletion of RRM1 eliminated the splicing activity of SRSF1 and thus cellular transformation. PMID: 23843040
Specific effects on regulated splicing by SR proteins SRSF1 and SRSF2 depends on a complex set of relationships with multiple other SR proteins in mammalian genomes. PMID: 23562324
Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). PMID: 21822258
analysis of the miRNA-mediated interaction between leukemia/lymphoma-related factor (LRF) and alternative splicing factor/splicing factor 2 (ASF/SF2) affects cell senescence and apoptosis PMID: 20923760
Modulation of Xist RNA processing may be part of the stochastic process that determines which X chromosome will be inactivated. PMID: 20657585
Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1 PMID: 11925564
Both hnRNP A1 and alternative splicing factor/splicing factor 2 contents rose in adenomas and during injury-induced hyperplasia compared to control lungs PMID: 15390079
These results highlight the requirement of Sfrs1-mediated alternative splicing for the survival of retinal neurons, with sensitivity defined by the window of time in which the neuron was generated. PMID: 18987029